
 © Michael Turek

COMPUTER NETWORKS, MULTIMEDIA

 013

Subject:
 Multimedia network streaming:
 RTP (Real Time Protocol) - IP multicast traffic
 RTP unicast IP traffic (for MPEG Transport Stream and other mutex)
 RTSP (Real Time Streaming Protocol)
 Legacy UDP streaming
 Multimedia streams over HTTP
 MMS (Microsoft Media Server)

Task A: RTP (Real Time Protocol) IP, multicast traffic.

1. RTP protocol packets are usually sent over the UDP - providing core functionality

for defining video frames, synchronization, media streaming (audio + video) etc.
However, that knowledge does not provide specifics on the stream itself (codec
variants, encoded signal parameters, etc.). To restore signal on destination host, it
is necessary to add such information. Usually it is done by adding to the RTP
protocol support a SDP (Session Description Protocol)

2. Prepare installation consisting of two Cisco router and PC computer:

Check a status of firewall software on PC computers, making sure that it will not
interfere with the experiments.

3. Configure routers to support both unicast and multicast IP routing:
Router (config) #ip routing
Router (config) #ip multicast-routing
Router (config) # int fa 0 / 0
Router (config-if) # ip address 200.200.200.1 255.255.255.0
Router (config-if) #ip pim dense-mode
Router (config-if) #no shut
Router (config) # int fa 0 / 1
Router (config-if) # ip address 200.200.201.1 255.255.255.0
Router (config-if) #ip pim dense-mode
Router (config-if) #no shut

4. All tasks will be performed using tools VideoLAN (VLC Player) used as receivers

and transmitters of multimedia streams.

5. IP multicast streaming:
On the first PC run IP multicast source.
VLC: use the following command:

vlc.exe "c:\File" :sout={rtp#dst=224.1.1.1,port=6666,mux=ts,ttl=10} sout-all: sout-
keep --repeat

where file is the path to the file with the material for streaming and mux is a kind
of libav format. Ts is selected MPEG Transport Stream - a variant designed for
MPEG streaming (including the extension of the Session Description Protocol). It
is necessary to emit an IP multicast datagrams with TTL greater than a the
number of routers planned to go through (to reach the destination).

6. On the second turn on the PC turn a Multicast RTP Multicast RTP media player
on:

vlc.exe: rtp://224.1.1.1: 6666

It is possible to specify additional IP unicast source to exclude other sources of
some multicast group (formally it’s: Source-Specified Multicast, SSM):

vlc.exe rtp://200.200.200.2@224.1.1.1:6666

7. Run the Wireshark on a PC computer. Observe a traffic with multicast IP / UDP
transmission.

Task B: RTP unicast IP traffic (MPEG Transport Stream)

1. In opposition to previous case (IP multicast), IP unicast UDP/RTP transmission

requires the sending of IP packets as the recipient stream.

2. Start the transmission with following command line:

vlc.exe " c:\file" :sout={rtp#dst=200.200.201.2,port=6666,mux=ts;ttl=10} :sout-all
sout-keep

UDP datagrams will now be forwarded to the recipient host, and there either be
lost or received by some application (if it exists and waiting on UDP socket). The
stream is marked with destination UDP port number, so the recipient must specify
it when connecting to proper socket:

vlc.exe rtp://200.200.201.2:6666

3. Observe (Wireshark) the traffic associated with the IP unicast / UDP transmission.
Check whether it is possible to connect two client applications to the same
stream. Start at the same time a similar transmission using a different UDP port.

4. Set the transmission again, but using personally selected streams (supplied under
RTP by name):

Broadcast:
vlc.exe "c:file"
 :sout=#rtp{dst=200.200.201.2,name=streamname,port=6666,mux=ts,ttl=10}
 :sout-all :sout-keep

Stream receiving command:

vlc.exe rtp://200.200.201.2:6666/streamname

Task C: RTSP (Real Time Streaming Protocol)

1. The use of RTSP does not require a use of mutex. The default UDP port number

received by the customer (recipient) for RTSP is 554.

Broadcast:
vlc.exe "c:\file"
 :sout=#rtp{dst=200.200.201.2,ttl=10,sdp=rtsp://200.200.200.2:554/}
 :sout-all :sout-keep

where 200.200.200.2 is the sender’s IP address (SDP is transmitted by the
sender host in RTSP).

Stream receiving command:

vlc.exe rtsp://200.200.200.2:554/

Note: Playback requires picking a stream which has already reached the
destination computer .
Note: The character '/' at the end of the command is required and means a stream
under undefined name. If the recipient located on the same host as the
broadcaster does not specify the port number, port 554 is used.

2. With names of streams additionally used, the command will look as follows:

vlc.exe "c:\file"
 :sout=#rtp{dst=200.200.201.2,ttl=10,sdp=rtsp://200.200.200.2:554/stream}
 :sout-all :sout-keep

Stream receiving command:

vlc.exe rtsp://200.200.200.2:554/stream

3. Start the transmission and watch the traffic associated with it (Wireshark). Again -
check whether it is possible to connect two client applications to the same flow.

Task D: MPEG-TS streaming directly over UDP (without RTP)

1. Complete abandonment of RTP (UDP legacy mode) requires an appropriate

mutex in a stream (to meet requirements of MPEG Transport Stream).

vlc.exe "c:\file"
 :sout=#udp{dst=200.200.201.2:6666,mux=ts,ttl=10} :sout-all :sout-keep

The syntax used in the URL to receive a legacy UDP stream:

udp://ip_source:port_source@ip _dest:port_dest

You can skip ip_dest (UDP datagrams have already been delivered to the
recipient's destination computer):

vlc.exe udp://200.200.200.2@200.200.201.2:6666
vlc.exe udp://200.200.200.2@:6666

or skip the source specification:

vlc.exe udp://@200.200.201.2:6666

2. Start the transmission. As before, check whether it is possible to connect two
client applications to the same flow.

Task E: HTTP streaming transmissions in the client-server
architecture

1. A use of client-server architecture requires to run a server (sender) first, waiting

for client connections. The built-in HTTP server package VideoLAN lets you use
the HTTP service for streaming. Again, activities related to streaming control
(muxer) will be set over MPEG-TS.

Broadcast:

vlc.exe "c:\file" :sout=#http{mux=ts,dst=:6666/} :sout-all :sout-keep

where 6666 this time the TCP port for the HTTP service (data streaming on
request), '/' represents the resource’s ID within the HTTP URL.

Note: an empty field before “:” indicates a localhost.

Reception: vlc.exe:

http://200.200.200.2:6666/

where 200.200.200.2 is an IP address of a SENDER.

2. Start the transmission and watch (Wireshark) the traffic associated with it. Check
whether it is possible to connect two client applications to the same flow.

Task F: Microsoft Media Server live network streaming format

1. Streaming compatible with MMS (also in a client-server architecture) requires the

stream to be re-encoded to Windows Media Server multimedia stream.

Broadcasting and conversion into the required format in real time:

vlc.exe "c:\file"
 :sout=#transcode{vcodec=DIV3,vb=800,acodec=mp3,ab=128,channels=2,
 samplerate=44100}:std{access=mmsh,mux=asfh,dst=0.0.0.0:6666}
 :sout-all :sout-keep

where 6666 is the port number the MMC service, 0.0.0.0 allows hosts to receive a
stream.

Reception by VideoLAN (requirement is to use the MMS-Helper which is an
extension of the MMC unifying VideoLan):

vlc.exe mmsh://200.200.200.2:6666

where 200.200.200.2 address is a SENDER IP address.

2. Start Windows Media Player application on a Windows PC computer. In the "File"
menu select "Open URL" and enter the following address:

mms://200.200.200.2:6666

3. Watch (Wireshark) a transmission traffic. Check whether it is possible to connect
two client applications to the same flow.

Task G: VideoLAN – other streaming operations

Run stream (configured sender + receiver) in the following situations:

1. DUPLICATE: two windows on-screen, window + stream via UDP:
vlc.exe "c:\file" :sout=#duplicate{
 dst=display,

 dst=display
 }
 :sout-all :sout-keep

vlc.exe "c:\file" :sout=#duplicate{
 dst=rtp{dst=200.200.201.2,port=6666,mux=ts,ttl=10},
 dst=display
 }
 :sout-all :sout-keep

2. DUPLICATE: two streams at the same network protocol:

vlc.exe "c:\file" :sout=#duplicate{
 dst=rtp{dst=200.200.201.2,port=6666,mux=ts,ttl=10},
 dst=rtp{dst=200.200.201.2,port=7777,mux=ts,ttl=10}
 }
 :sout-all :sout-keep

3. DUPLICATE two streams in the same network and transport protocol but use two
transmission modes (IP unicast and IP multicast):

vlc.exe "c:\file" :sout=#duplicate{
 dst=rtp{dst=200.200.201.2,port=6666,mux=ts,ttl=10},
 dst=rtp{dst=224.1.1.1,port=7777,mux=ts,ttl=10}
 }
 :sout-all :sout-keep

4. DUPLICATE: two streams in a variety of network protocols:

vlc.exe "c:\file" :sout=#duplicate{
 dst=rtp{dst=200.200.201.2,port=6666,mux=ts,ttl=10},
 dst=http{dst=:6666/,mux=ts}
 }
 :sout-all :sout-keep

Run the above examples one by one, each time choosing the proper
configuration of recipients (like in the previous task).

5. Playback YouTube resources redirecting it into a network stream:

vlc.exe https://www.youtube.com/watch?v=BEG-ly9tQGk
:sout=#duplicate{dst=display,dst=rtp{dst=200.200.201.2,port=6666,mux=ts,ttl=10}
} :sout-all :sout-keep

6. Streaming the video from USB camera – and transcoding it into MPG stream
(connect the camera running the command):

vlc dshow:// :dshow-size="320x240"
:sout=#transcode{vcodec=mpgv,vb=1024,scale=1,acodec=mp3,ab=192,channels
=2}:rtp{dst=224.1.1.1,port=6666,mux=ts,ttl=10} :sout-keep

7. A screen capture:

vlc screen://

vlc screen:// :screen-width=640 :screen-height=480 :screen-follow-mouse

8. Capturing screen and streaming it to a file with mp4 + mp2/mp3 encoding:

vlc.exe screen:// :screen-fps=24 :screen-width=640:screen-height=480 :screen-
follow-mouse :dshow-caching=150
:sout=#transcode{vcodec=h264,soverlay,acodec=mp2a,ab=128,scale=1,channels
=2,deinterlace,audio-sync}:standard{access=file,mux=ts,dst="c:\out.mp4"}

